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ABSTRACT

We present the basic concepts of experimental design, the
types of goals it can address, and why it is such an important
and useful tool for simulation. A well-designed experiment
allows the analyst to examine many more factors than would
otherwise be possible, while providing insights that could not
be gleaned from trial-and-error approaches or by sampling
factors one at a time. We focus on experiments that can cut
down the sampling requirements of some classic designs by
orders of magnitude, yet make it possible and practical to de-
velop an understanding of a complex simulation model and
gain insights into its behavior. Designs that we have found
particularly useful for simulation experiments are illustrated
using simple simulation models, and we provide links to other
resources for those wishing to learn more. Ideally, this tuto-
rial will leave you excited about experimental designs—and
prepared to use them—in your upcoming simulation studies.

1 INTRODUCTION

The process of building, verifying, and validating a simula-
tion model can be arduous, but once it is complete, it’s time
to have the model work for you. One extremely effective
way of accomplishing this is to use experimental designs to
help explore your simulation model.

Before undertaking a simulation experiment, it is useful to
think aboutwhy this the experiment is needed. Simulation
analysts and their clients might seek to (i)develop a basic
understandingof a particular simulation model or system, (ii)
find robustdecisions or policies, or (iii)compare the merits
of various decisions or policies (Kleijnen et al. 2005). The
goal will influence the way the study should be conducted.

The field called Design of Experiments (DOE) has been
around for a long time. Many of the classic experimental
designs can be used in simulation studies. We discuss a
few in this paper to explain the concepts and motivate the
use of experimental design (see also Chapter 12 of Law and
Kelton 2000). However, the environments in which real-
world experiments are performed can be quite different from

the simulation environment. Table 1, adapted from Sanchez
and Lucas (2002), lists some of the assumptions made in
traditional DOE settings, as well as features that characterize
many simulation settings.

Three fundamental concepts in DOE are control, replica-
tion, and randomization.Controlmeans that the experiment
is conducted in a systematic manner after explicitly consid-
ering potential sources of error, rather than by using a trial-
and-error approach. This tutorial should give you a good
understanding of controlled experiments.Replicationcan be
viewed as a way to gain enough data to achieve narrow con-
fidence intervals and powerful hypothesis tests, or for graph-
ical methods to reveal the important characteristics of your
simulation model. In physical experiments,randomization
provides a probabilistic guard against the possibility of un-
known, hidden sources of bias surfacing to create problems
with your data.

In this introductory tutorial, we focus on setting up single-
stage experiments to address the first goal, and touch briefly
on the second. Although some very simple simulation mod-
els are used as examples in this paper, the designs we describe
have been extremely useful for investigating more complex
simulation models in a variety of application areas. For a de-
tailed discussion of the philosophy and tactics of simulation
experiments, a more extensive catalog of potential designs
(including sequential approaches), and a comprehensive list
of references, see Kleijnen et al. (2005). Additional ex-
amples, software for generating experimental designs, and
tips for implementing the experiment once a design has been
chosen, will be provided during the tutorial.

We will not cover examples of ranking and selection (R&S)
or multiple comparison procedures (MCP), although these
are useful approaches for comparing the merits of differ-
ent policies or qualitatively different systems. We refer the
reader instead to Goldsman, Kim, and Nelson (2005) for an
overview. We will also not cover techniques for simulation
optimization (Fu 2002).

The benefits of experimental design are tremendous. Once
you have gotten a taste of how much insight and information
can be obtained in a relatively short amount of time from
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Table 1: The Experimental Environment

Traditional DOE Assumptions Simulation Model Characteristics
Small or moderate number of factors Large number of factors
Linear or low-order effects Complex response surfaces
Sparse effects Many substantial effects
Negligible higher-order interactions Substantial higher-order interactions
Homogeneous errors Heterogeneous errors
Normally distributed errors Various error distributions
Univariate response Many performance measures of interest

a well-designed experiment, DOE should become a regular
part of the way you approach your simulation projects.

2 NUTS AND BOLTS

Our overarching goal is to provide you with some useful tools
for gaining a great deal of information in a short amount of
time. This includes the time you need to spend to set up
the experiments and consolidate the results, as well as the
computer time spent for conducting the runs.

2.1 Terminology and Notation

In DOE terms, experimental designs indicate how to vary
the settings offactors (sometimes calledvariables) to see
whether and how they affect theresponse. A factor can be
qualitative or quantitative. Potential factors in simulation
experiments include theinput parametersor distributional
parametersof a simulation model. For example, a simple
M/M/1 queueing system might have some quantitative fac-
tors (such as the mean customer inter-arrival time and mean
service time), and some qualitative factors (such as LIFO or
FIFO processing, priority classes, and preemptive or non-
preemptive service rules).

Different types of simulation studies involve different
types ofexperimental units. For a Monte Carlo simulation,
the experimental unit is a single observation. For discrete-
event stochastic simulation studies, the experimental unit
more often represents output from a run or a batch that is
averaged or aggregated to yield a single output value. The
run is the appropriate experimental unit for terminating sim-
ulations. If the output of interest is the time until termination,
or the number of events prior to termination, then the run’s
output is already in the form of a single number. When runs
form the experimental units for nonterminating simulations,
and steady-state performance measures are of interest, care
must be taken to delete data from the simulation’s warm-up
period before performing the averaging or aggregation.

Mathematically, letk denote the number of factors in our
experiment, letX1, . . . , Xk denote the factors, and letY
denote a response of interest. This is sometimes called a
measure of effectiveness (MOE) or measure of performance

(MOP). Sometimes graphical methods are the best way to
gain insight aboutY ’s, but often we will be interested in
constructingresponse surface metamodelsthat approximate
the relationships between the factors and the responses with
statistical models (typically regression models).

Unless otherwise stated, we will assume that theXi’s are
all quantitative. Amain-effects modelmeans we assume

Y = β0 + β1X1 + . . . + βkXk + ε (1)

= β0 +
k∑

i=1

βiXi + ε,

where theε’s are independent random errors. Ordinary least
squares regression assumes that theε’s are also identically
distributed, but the regression coefficients are still unbiased
estimators even if the underlying variance is not constant.

“Quadratic effects” means we will include terms likeX2
1 as

potential explanatory variables forY . Similarly, “two-way
interactions” are terms likeX1X2. A second-order model
includes both quadratic effects and two-way interactions, i.e.,

Y = β0 +
k∑

i=1

βiXi +
k∑

i=1

βi,iX
2
i (2)

+
k−1∑
i=1

k∑
j=i+1

βi,jXiXj + ε,

although it is best to fit this equation after centering the
quadratic and interaction terms, as in (3):

Y = β0 +
k∑

i=1

βiXi +
k∑

i=1

βi,i(Xi −Xi)2 (3)

+
k−1∑
i=1

k∑
j=i+1

βi,j(Xi −Xi)(Xj −Xj) + ε.

In general, adesignis a matrix where every columns cor-
responds to a factor, and the entries within the column cor-
respond to settings for this factor. Each row represents a
particular combination of factor levels, and is called adesign
point. If the entries in the rows correspond to the actual set-
tings that will be using for the experiment, these are called
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natural levels. Coding the levels is a convenient way to al-
low the same basic design to be reused for any experiment
involving the same number of factors and the same numbers
of levels. Different codes are possible, but a convenient one
for quantitative data is to specify the low and high coded
levels as−1 and+1, respectively. Table 2 shows a simple
experiment, in both natural and coded levels, that could be
conducted on anM/M/1 queue.

Table 2: Simple Experimental Design for anM/M/1 Queue

Natural Levels Coded Levels
Interarrival Service Interarrival Service

Design Rate Rate Rate Rate
Point λ µ λ µ

1 16 20 −1 −1
2 18 20 +1 −1
3 16 22 −1 0
4 18 22 +1 0
5 16 24 −1 +1
6 18 24 +1 +1

If we repeat the whole design matrix, this is called arepli-
cationof the design. LetN be the number of design points,
andb be the number of replications. Then the total number of
experimental units, whether runs or batches, isNtot = Nb.

2.2 Pitfalls to Avoid

Two types of studies are sometimes called “experiments,” but
they do not fit an example of a well-designed experiment.
The first often arises from several people sitting around the
table, each of whom has his or her own idea about what
constitutes “good” or “interesting” combinations of factor
settings. This may lead to the investigation of a handful
of design points where many factors change simultaneously.
For illustration purposes, consider an agent-based simulation
model of the children’s game of capture-the-flag, where an
agent attempts to sneak up on the other team’s flag, grab
it, and run away. Suppose that only two design points are
used, corresponding to different settings for speed (X1) and
stealth (X2), with the results in Figure 1. One subject-matter
expert might claim these results indicate that high stealth is
of primary importance, another might claim that speed is
the key factor for success, and a third that they are equally
important. There isno wayto resolve these differences of
opinion without collecting more data. In statistical terms, the
effects of stealth and speed are said to beconfoundedwith
each other. In practice, simulation models easily have tens or
hundreds of potential factors whose settings can be altered.
A handful of haphazardly chosen scenarios, or a trial-and-
error approach, can end up using a great deal of time without
yielding answers to the fundamental questions of interest.

The second type of study that can be problematic occurs
when people start with a “baseline” scenario and vary one
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Figure 1: Confounded Factor Effects for Capture-the-Flag

factor at a time. Revisiting the capture-the-flag example, sup-
pose the baseline corresponds to low stealth and low speed.
Varying each factor, in turn, to its high level yields the re-
sults of Figure 2. It appears thatneitherfactor is important,
so someone using the simulation results to decide whether to
play the game might just go home instead.
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Figure 2: One-at-a-Time Sampling for Capture-the-Flag

However, if all four combinations of speed and stealth
(low/low, low/high, high/low, and high/high) were sam-
pled, it would be apparent that success requires both speed
and stealth to be at high settings. This means the factors
interact—and if there are interactions, one-at-a-time sam-
pling will never uncover them!

The pitfalls of using a poor design seem obvious on this
toy problem, but the same mistakes are all-too-often made
in larger studies of more complex models. When only a
few variations or excursions from a baseline are conducted,
there may be many factors that change but a few that subject
matter experts think are “key.” If they are mistaken, changes
in performance from the baseline scenario may be attributed
to the wrong factors. Similarly, many analysts change one
factor at a time from their baseline scenario. In doing so,
they fail to understand that this approach implicitly assumes
that there are no interaction effects. This assumption may be
unreasonable unless the region of exploration is small.

2.3 Example: Why Projects are Always Late

One well-known problem in operations research is called
project management. A sequence of tasks are performed
where some of the tasks must be completed before others
can be started, while others can be worked on concurrently.
A precedence diagram (Figure 3) is a graphical way to rep-
resent these relationships. The tasks relate to one another in
terms of the job completion time. Each node on the diagram
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corresponds to a task that must be done, and an arrow from
node A to node B indicates that task A must be completed
before task B can begin. One convention is that we specify
“Start project” and “End project” tasks so that every task is on
at least one path from the beginning to the end of the project.

In addition to the precedence information, we also need
to keep track of the times required to complete the various
tasks. The mean completion times appear above the nodes in
Figure 3. This graph is so simple that—if all tasks take their
average time to complete—the project clearly cannot finish
in under 27 days, since the path of A-E-F-G-H requires 27
days to finish.
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Figure 3: Project Management Precedence Diagram

A simple technique called PERT (Program Evaluation Re-
view Technique) makes it easy to identify this so-calledcrit-
ical path for even larger networks. A related approach is
CPM (Critical Path Management), which considers how tasks
might be cost-effectively expedited. Sometimes these are
lumped together and just referred to as PERT/CPM (Hillier
and Lieberman 2005). A probabilistic version of PERT takes
into account the variability of tasks on the critical path. Con-
sider the task time means and standard deviations shown in
Table 3. If the tasks times are assumed to be independent,
then the mean and variance on pathCp ={A, E, F, G, H}
(ignoring all other tasks) are

µtot =
∑
i∈C

µi = 5 + 15 + 7 = 27, and (4)

σ2
tot =

∑
i∈C

σ2
i = 22 + 32 + 12 = 14. (5)

If the individual task time distributions nearly normal, or if
many tasks lie on the critical path, then the central limit the-
orem can be invoked. Quantiles from the normal distribution
can be used to estimate the probabilities of completing (or
failing to complete) the project in a specified time.

The title of this section is “why projects are always late,”
so what might go wrong if the calculations in equations (4)
and (5) are used? Sometimes you might not get the full
benefit if a task on pathCp finishes early. For this example,
if tasks F and G are expedited, or by chance their completion
times are less than the expected means, this will benefit the
project. However, suppose you happen to spend only one

Table 3: Task Time Distributional Parameters
Taski Description µi (days) σi (days)
A Start 0 0
B 3 0.5
C 1 0.1
D 1 0.2
E 5 2
F 15 3
G 7 1
H End 0 0

day on Task E but all other tasks take their average times
to complete. The “new” critical path will be A-B-F-G-H
for a total of 25 days. You will shorten a “bottleneck” task
by four days but only save two days on the overall project.
PERT/CPM does not account for variations of the critical
path itself.

If we actually knew the true task time means and standard
deviations, we could do a simple Monte Carlo simulation.
Each replication would involve generating completion times
for each task based on the task means, standard deviations,
and normality assumptions, and using the precedence dia-
gram to determine the time needed to complete the entire
project. A frequency distribution of the total project comple-
tion time, as well the proportion of time each task appears
on the critical path, could be built by replicating the exper-
iment. These, in turn, might provide useful insights to a
project manager.

It is rare in practice that we “know” such detail about the
inputs to the simulation model. A validated simulation model
should reflect the essential characteristics of the real-world
system, but the very act of modeling means that simplifying
assumptions will be made. For this project management ex-
ample, we have implicitly assumed independence among the
task times, specific distributions for the task time variability
(normal), as well as specific parameters for these distribu-
tions (theµi’s andσi’s). Instead, suppose the project man-
ager and the simulation analyst have determined what they
consider reasonable low and high values for the task means
and standard deviations.

Real-world projects often have many more tasks and more
complicated precedence structures than that of of Figure 3.
Consider a more complex project where there are 26 tasks
(A-Z). Suppose that 19 of these tasks are considered to have
deterministic task times, ranging from 100 minutes to 1,000
minutes. Information about the low and high levels for the
task time distributional parameters for the other seven tasks
are provided in Table 4. For now, we retain the assumptions
of normality and independence for the task times.

In the next sections, we show how treating some or all of
these as factors in well-designed experiments allows us to ex-
plore the system, gain insights about which of the factors or
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Table 4: Low and High Factor Settings
for Project Management Factors

Taski Range forµi Range forσi

B 640 – 660 10 – 16
E 1,200 – 1,600 50 – 200
F 280 – 320 4 – 10
P 670 – 700 0 – 2
Q 9 – 39 1 – 3
S 900 – 1,100 0 – 30
T 280 – 320 4 – 10

interactions have the most influence on the response, or seek
robust solutions. Although the project management exam-
ple is a terminating simulation, the designs can also be used
for truncated runs or batches when exploring a steady-state
system simulation.

3 USEFUL DESIGNS

3.1 What Works When

Many designs are available in the literature. We focus on a
few basic types that we have found particularly useful for
simulation experiments. Factorial or gridded designs are
straightforward to construct and readily explainable—even to
those without statistical backgrounds. Coarse grids (2k fac-
torials) are most efficient if we can assume that the simulation
response is well-fit by a model with only linear main effects
and interactions, while fine grids provide greater detail about
the response and greater flexibility for constructing meta-
models of the responses. When the number of factors is large,
then more efficient designs are required. We have found Latin
hypercubes to be good general-purpose designs for explor-
ing complex simulation models when little is known about
the response surfaces. Designs calledresolution 5(R5) 2k

fractional factorials allow the linear main effects and interac-
tions of many factors to be investigated simultaneously; they
are potential choices either when factors have only two qual-
itative settings, or when practical considerations dictate that
only a few levels be used even for quantitative input factors.
Expanding these R5 fractional factorials to central composite
designs provides some information about nonlinear behavior
in simulation response surfaces.

Factorials (or gridded designs) are perhaps the easiest to
discuss: they examine all possible combinations of the factor
levels for each of theXi’s. A shorthand notation for the
design ismk, which meansk factors are investigated, each at
m levels, in a total ofmk design points. We can write designs
where different sets of factors are investigated at different
numbers of levels as, e.g.,mk1

1 ×mk2
2 . These are sometimes

calledcrosseddesigns. For example, the design in Table 2 is
a21 × 31 factorial experiment.

3.2 2k Factorial Designs (Course Grids)

The most commonly used factorial design is a2k because it
requires only two levels for each factor. These can be low
and high, often−1 and+1 (or − and+). 2k designs are
very easy to construct. Start by calculating the number of
rowsN = 2k. The first column alternates−1 and+1, the
second column alternates−1 and+1 in groups of 2, the third
column alternates in groups of 4, and so forth by powers of
2. If you are using a spreadsheet, you can easily move from
a design fork factors to a design fork+1 factors by copying
the 2k design, pasting it below to obtain a2k × k matrix,
and then adding a column for factork + 1 with the first2k

values set to−1 and the second set of2k values set to+1.
Conceptually,2k factorial designs sample at the corners of
a hypercube defined by the factors’ low and high settings.
Figure 4 shows examples for22 and23 designs. Envisioning
a24 or larger design is left to the reader.

X1 X1

X2X2

X3

Figure 4:22 and23 Factorial Designs

Factorial designs have several nice properties. They let us
examine more than one factor at a time, so they can be used
to identify important interaction effects. They are alsoor-
thogonaldesigns: the pairwise correlation between any two
columns (factors) is equal to zero. This simplifies the analy-
sis of the output (Y values) we get from running our experi-
ment, because estimates of the factors’ effectsβ̂i’s) and their
contribution to the explanatory power (R2) of the regression
metamodel will not depend on what other explanatory terms
are placed in the regression metamodel.

Any statistical software package (e.g., JMP, Minitab, SAS,
S-plus, SPSS, etc.) will allow you to to fit regression models
with interaction terms, as well as main effects. If you must do
your analysis in Excel, you will have to manually construct
the appropriate columns for the interaction terms. When
working in coded levels, the interaction columns are found
by simply multiplying the columns for the associated main
effects, as Table 5 shows for a23 factorial. (To save a little
room on the headings, I’ve left out theX ’s and just given the
factor numbers.) When working in natural levels, it is best to
subtract the means from each of the factors before creating
the interaction columns. For example, the explanatory term
corresponding to theX1X2 interaction should be the column
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of values(X1 −X1)(X2 −X2). Note that theX ’s used in
these equations are the average values from the design; they
do not necessarily correspond to factor means in the real-
world setting under investigation.

Table 5: Terms for a23 Factorial Design
Design Term
Point 1 2 3 1,2 1,3 2,3 1,2,3

1 −1 −1 −1 +1 +1 +1 −1
2 +1 −1 −1 −1 −1 +1 +1
3 −1 +1 −1 −1 +1 −1 +1
4 +1 +1 −1 +1 −1 −1 −1
5 −1 −1 +1 +1 −1 −1 +1
6 +1 −1 +1 −1 +1 −1 −1
7 −1 +1 +1 −1 −1 +1 −1
8 +1 +1 +1 +1 +1 +1 +1

Table 5 shows that there are seven different terms (three
main effects, two two-way interactions, and one three-way
interaction) that we could consider estimating from a23 fac-
torial experiment. Of course, since we also want to estimate
the intercept (overall mean), that means there are eight things
we could try to estimate from eight data points. That will not
work—we will always need at least one degree of freedom
(d.f.) for estimating error (and preferably, a few more).

If we increase the number of factorsk, we find a similar re-
lationship. In general, there will bek main effects, (k choose
2) two-way interactions, (k choose 3) three-way interactions,
and so forth, up to a singlek-way interaction. If we add all
these up, we get a total of2k − 1 terms plus the intercept.
Once again, we won’t be able to estimate everything because
there won’t be any d.f. left over for error.

So, what do people do with a factorial design? One pos-
sibility is to replicate the design to get more d.f. for error.
Estimating eight effects from eight observations (experimen-
tal units) is not possible, but estimating eight effects from
16 observations is easy. Replication also makes it easier to
detect smaller effects by reducing the underlying standard
errors associated with theβ’s.

Another option is tomake simplifying assumptions.The
most common approach is to assume that some higher-order
interactions don’t exist. In the23 factorial of Table 5, one
d.f. would be available for estimating error if the three-way
interaction could safely be ignored. We could then fit a
second-order regression model to the results. Similarly, if
we generated data for a single replication of a24 factorial
design but could assume there was no four-way interaction
we would have one d.f. for error; if we could assume there
were no three-way or four-way interactions, we would have
five d.f. for error.

Making simplifying assumptions sounds like a potentially
dangerous thing to do, but it is often a good approach. Over
the years, statisticians conducting field experiments have
found that often, if there are interactions present, the main ef-

fects will also show up unless you “just happened” to set the
low and high levels so everything cancelled out. There’s also
a rule of thumb stating that the magnitudes of two-way inter-
actions are at most about 1/3 the size of main effects, and the
magnitudes of three-way interactions are at most about 1/3
the size of the two-way interactions, etc. Whether or not this
holds for experiments on simulations of complex systems is
not yet certain. We may expect to find stronger interactions
in a combat model or a supply chain simulation than when
growing potatoes.

Now, let’s return to project management. Suppose we
decide to run an experiment where we vary the means for
tasks B, E, F, and M, and leave all other potential factors
(µi’s andσi’s) at their middle levels. The actual design, in
both coded and natural levels, appears in Table 6. With four
factors, there are 16 runs and 15 effects (four main effects,
six two-way interactions, four three-way interactions, and
one four-way interaction). We could estimate all but one of
these effects from single replication of the experiment, or all
these effects if two or more replications are made.

Table 6:24 Factorial Design for Project Management

Design Coded Levels Natural Levels
Point B E F Q B E F Q

1 − − − − 640 1200 280 9
2 + − − − 660 1200 280 9
3 − + − − 640 1600 280 9
4 + + − − 660 1600 280 9
5 − − + − 640 1200 320 9
6 + − + − 660 1200 320 9
7 − + + − 640 1600 320 9
8 + + + − 660 1600 320 9
9 − − − + 640 1200 280 39
10 + − − + 660 1200 280 39
11 − + − + 640 1600 280 39
12 + + − + 660 1600 280 39
13 − − + + 640 1200 320 39
14 + − + + 660 1200 320 39
15 − + + + 640 1600 320 39
16 + + + + 660 1600 320 39

Once one or more replications of this basic design are
conducted, and the resulting responseY is analyzed, we can
build regression models or use graphical methods to estimate
various factor and interaction effects.

3.3 mk Factorial Designs (Finer Grids)

Examining each of factors at only two levels (the low and
high values of interest) means you have no idea how the
simulation behaves for factor combinations in the interior of
the experimental region. Finer grids can reveal complexities
in the landscape. When each factor has three levels, the
convention is to use -1, 0 and 1 (or−, 0, and+) for the coded
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levels. Consider the capture-the-flag example once more.
Figure 5 shows the (notional) results of two experiments: a
22 factorial (on the left) and an112 factorial (on the right).
For the22 factorial, all that can be said about the factors is that
when speed and stealth are both high, the agent is successful.
Much more information is conveyed by the112 factorial:
here we see that if the agent can achieve a minimal level
of stealth, then speed is more important. In both subgraphs
the green circles—including the upper right-hand corner—
represent good results, the light yellow circles in the middle
represent mixed results, and the red circles on the left-hand
side and bottom of the plot represent poor results.
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Figure 5: 22 and 112 Factorial Experiments for
Capture-the-Flag

The larger the value ofm for anmk factorial design, the
better the space-filling properties of the design. A scatterplot
matrix of the design points shows pairwise projections of the
full design onto each pair of factors, and can be a useful way
to show the design’s space-filling characteristics. Consider
the graph in Figure 6 that corresponds to a54 factorial design.
Each subplot has four points in the corners, four additional
points along each edge, and nine points in the interior. The
corresponding subplots for a24 factorial would each reveal
only four points, one at each quarter. The bad news is that
the finer grid requires 625 design points instead of 16.

Table 7 shows just the design, not the results, but fitting re-
gression models to the output data is again straightforward.
Take care that if your statistical software doesn’t automat-
ically center the interaction terms when it’s time to fit the
model, you do this manually. You can see if adding (cen-
tered) quadratic terms will improve your metamodel, or ex-
plore higher-order terms. Surface plots and contour plots of
the average behavior may be nice ways of looking at the re-
sults as a function of two factors at a time. These graphical
methods mean you can focus on interesting features of the
response surface landscape (such as thresholds, peaks, or flat
regions) without assuming a specific form for the regression
model. Regression trees, interaction plots, contour plots, and
parallel plots are also useful for exploring the data. Examples
can be found in Sanchez and Lucas (2002); Cioppa, Lucas,
and Sanchez (2004); or Kleijnen et al. (2005).

Despite the greater detail provided, and the ease of in-
terpreting the results, fine grids are not good experimental
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Figure 6: Scatterplot Matrix for a54 Factorial Design

designs for more than a handful of factors because of their
massive data requirements. Even2k designs have this prob-
lem, as Table 7 shows.

Table 7: Data Requirements for Factorial Designs

No. of
factors 10k factorial 5k factorial 2k factorial

1 10 5 2
2 102 = 100 52 = 25 22 = 4
3 103 = 1, 000 53 = 125 23 = 8
5 100,000 3,125 32

10 10 billion 9,765,625 1,024
20 don’t even 95 trillion 1,048,576
40 think of it! 9100 trillion 1 trillion

trillion

Considering the number of high-order interactions we
couldfit but may not believe are important (relative to main
effects and two-way or possibly three-way interactions), this
seems like a lot of wasted effort. It means we needsmarter,
more efficienttypes of experimental designs if we are inter-
ested in exploring many factors.

3.4 Latin Hypercube Designs

Latin hypercube (LH) sampling provides a flexible way of
constructing efficient designs for quantitative factors. They
have some of the space-filling properties of factorial designs
with fine grids, but require orders of magnitude less sampling.
Once again, letk denote the number of factors, and letN ≥ k
denote the number of design points. We will use a different
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coding for factor levels in LH designs. The low and high
levels for factorXi are coded as 1 andN , respectively, and
the set of coded factor levels are{1, 2, . . . , N}.

For a random LH design, each column is randomly per-
muted. In one replication, each of thek factors will be sam-
pled exactly once at each of itsN levels. Table 7 shows an
example of a random LH fork = 2 andN = 11. Using
this experimental design for our capture-the-flag simulation
yields the results of Figure 7. Compare this design to those
of Figure 5. Unlike the22 factorial design, the LH design
provides some information about what happens in the center
of the experimental region. We do not get the same detailed
information that the112 provides about the boundaries be-
tween regions poor, fair, and good performance, but we do
find that success occurs when both speed and stealth are high,
that high stealth and moderate speed yield mixed results, and
that if either speed or stealth is low the agent is unsuccessful.
This happens with a fraction of the sampling cost (N = 11
vs. N = 121 of the112 factorial design.

Speed
  1
  3
  7
  2
  5
  6

Stealth
 11
  5
  7
  3
10
  4

Speed
10
  4
11
  8
  9

Stealth
  1
  2
  8
  9
  6

Speed

St
ea

lth

Figure 7: Random Latin Hypercube Design for Capture-
the-Flag

The benefits of LH sampling become most apparent ask
increases. The smallest LH designs are square, withN = k,
so the number of design points grows linearly withk rather
than exponentially. This means that 40 factors can be inves-
tigated in as few as 40 design points, rather than the over
1,000,000,000,000 required for a240 factorial experiment.
Suppose our simulation runs in one second—with a LH de-
sign we could complete a replication of the experiment in
under a minute, while the240 factorial design would require
over 348 centuries of CPU time for each replication.

Random LH designs have good orthogonality properties if
N is much larger thank, but for smaller designs some factors
might have high pairwise correlations. One approach often
taken is to randomly generate many LH designs and then
choose a good one. Alternatively, Cioppa and Lucas (2005)
have developed tables of so-called nearly orthogonal Latin
hypercube (NOLH) designs that have good space-filling and
orthogonality properties for small or moderatek. A scat-
terplot matrix of a NOLH that analyzes four factors in 17
design points is shown in Figure 8. The two-dimensional
space-filling behavior compares favorably with that of the54

design (requiring 625 design points) of Figure 6.
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Figure 8: Scatterplot Matrix for a Nearly Orthogonal Latin
Hypercube Design with Four Factors in 17 Runs

The number of design points required for investigatingk ≤
29 factors are provided in Table 8. These are dramatically less
than the design points for gridded designs shown in Table 7.

Table 8: Data Requirements for Nearly
Orthogonal Latin Hypercube Designs

No. of Factors No. of Design Points
2–7 17
8–11 33

12–16 65
17–22 129
23–29 257

Consider the project management simulation once again.
Instead of limiting the study to the four factors representing
the mean completion times for tasks B, E, F, and Q, we could
instead examine all seven means in a NOLH design with 17
design points, as Table 9 shows. Alternatively, we could
vary four means and four standard deviations in a NOLH
design with 33 design points, or all seven means and all seven
standard deviations in a single design with 65 design points.

Replicating the design will allow us to determine whether
or not a constant error variance is a reasonable characteri-
zation of the simulation’s performance, and is highly rec-
ommended. If we have the time and budget for even more
sampling, then several Latin hypercubes can be stacked to
obtain a larger design with better space-filling properties. Ex-
amples for agent-based simulation models appear in Allen,
Buss and Sanchez (2004), Wolf et al. (2003), and Kleijnen
et al. (2005).
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Table 9: NOLH Design for Seven Factors in 17 Runs for
Project Management Simulation (Natural Levels)

Design
Point B E F P Q S T

1 646 1600 313 681 17 1088 303
2 641 1300 315 687 9 963 305
3 643 1375 283 678 28 1063 320
4 644 1450 293 700 26 925 310
5 655 1575 298 674 18 900 313
6 660 1325 295 694 11 1050 315
7 653 1275 320 679 35 988 318
8 651 1550 310 698 33 1025 308
9 650 1400 300 685 24 1000 300
10 654 1200 288 689 32 913 298
11 659 1500 285 683 39 1038 295
12 658 1425 318 693 20 938 280
13 656 1350 308 670 22 1075 290
14 645 1225 303 696 30 1100 288
15 640 1475 305 676 37 950 285
16 648 1525 280 691 13 1013 283
17 649 1250 290 672 15 975 293

3.5 2k−p Resolution 5 Fractional Factorial Designs

While Latin hypercubes are very flexible, they are not the
only designs useful for simulation experiments involving
many factors. Sometimes many factors take on only a few
levels. Traffic at both rush-hour and off-peak times might
be of interest. We might have a few types of equipment
that could be used to manufacture a particular part, or a few
different rules for handling tasks of different priorities. A
project manager might be able to expedite a specific task.
LH designs work best when most factors have many levels.

Instead, we can consider varations of gridded designs. As
long as we are willing to assume that some high-order in-
teractions aren’t important, then we can cut down (perhaps
dramatically) on the number of runs that are required for a
factorial experiment. This will be illustrated using a2k fac-
torial, but the same ideas hold for other situations. Consider
the 23 design in Table 2, and suppose that we are willing
to assume that there are NO interactions. It turns out that
we could call this columnX4, and investigate four factors in
23 = 8 runs instead of four factors in 16 runs! This is called
a24−1 fractional factorial. The design shows up in Table 10:
we would be able to estimate (or test) four different factors
in eight runs.

Better yet, as long as we are assuming no interactions, we
could squeeze a few more factors into the study. Take Table 5,
which showed all the interaction patterns for a23 factorial,
and substitute in a new factor for any interaction term.

For example, the design in Table 11 is called a27−4 frac-
tional factorial, since the base design varies seven factors in

Table 10:24−1 Fractional Factorial Design

Design Point X1 X2 X3 X4

1 −1 −1 −1 −1
2 +1 −1 −1 +1
3 −1 +1 −1 +1
4 +1 +1 −1 −1
5 −1 −1 +1 +1
6 +1 −1 +1 −1
7 −1 +1 +1 −1
8 +1 +1 +1 +1

only 27−4 = 8 runs instead of27 = 128 runs! X4 uses the
column that would correspond to anX1X2 interaction,X5

uses the column that would correspond to anX1X3 inter-
action, and similarly forX6 andX7. The design is said to
be saturatedsince we cannot squeeze in any other factors.
If we ignore the last column completely (i.e., we don’t have
a factorX7) then we can examine six factors in only eight
runs. If we takeb = 2 replications of this experiment, we
can examine seven factors in only 16 runs.

Table 11: Terms for a27−4 Fractional Factorial Design

Des. X1 X2 X3 X4 X5 X6 X7

Pt. (1,2) (1,3) (2,3) (1,2,3)
1 −1 −1 −1 +1 +1 +1 −1
2 +1 −1 −1 −1 −1 +1 +1
3 −1 +1 −1 −1 +1 −1 +1
4 +1 +1 −1 +1 −1 −1 −1
5 −1 −1 +1 +1 −1 −1 +1
6 +1 −1 +1 −1 +1 −1 −1
7 −1 +1 +1 −1 −1 +1 −1
8 +1 +1 +1 +1 +1 +1 +1

Graphically, fractional factorial designs sample at a
carefully-chosen fraction of the corner points on the hyper-
cube. Figure 9 shows the sampling for a23−1 factorial de-
sign, i.e., investigating three factors, each at two levels, in
only 23−1 = 4 runs. There are two points on each of the left
and right faces of the cube, and each of these faces has one
instance ofX2 at each level and one instance ofX3 at each
level, so we can isolate the effect for factorX1. Similarly,
averaging the results for the front and back faces allows us
to estimate the effect for factorX2, and averaging the results
for the top and bottom faces allows us to estimate the effect
for factorX3.

Saturated or nearly-saturated fractional factorials are very
efficient (relative to full factorial designs) when there are
many factors. For example, 64 runs could be used for a
single replication of a design involving 63 factors, or two
replications of a design involving 32 factors. Saturated or
nearly saturated fractional factorials are also very easy to
construct. However, these designs will not do a good job of
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Figure 9:23−1 Fractional Factorial

revealing the underlying structure of the response surface if
there truly are strong interactions but we have ignored them
in setting up the experiment. A compromise is to use R5
fractional factorials. These allow two-way interactions to be
explored but can require many fewer design points.

It is easy to create a2k−1 factorial (called ahalf frac-
tion) by setting up the first2k−1 columns as if we just had
k − 1 factors, and then constructing a column for the last
factor by taking the interaction (product) of the firstk − 1
columns. Except for the special cases whenk ≤ 4, we
will also be able to estimate two-way interactions with the
2k−1 designs. Unfortunately, a half-fraction is still ineffi-
cient if k is large. Until recently it was difficult to construct
a very efficient R5 fractional factorial for more than about a
dozen factors. For example, the largest R5 fractional facto-
rial in Montgomery (2000) is a210−3, while Box, Hunter, and
Hunter (1978) and NIST/Sematech (2005) provide a211−4.
Sanchez and Sanchez (2005) recently developed a method,
based on discrete-valued Walsh functions, for rapidly con-
structing very large R5 fractional factorial designs—a simple
Java program generates designs up to a2120−105 in under a
minute. These allow all main effects and two-way interac-
tions to be fit, and may be more useful for simulation analysts
than saturated or nearly-saturated designs. The sizes of the
resulting designs are given in Table 12.

Table 12: Data Requirements for Efficient2k−p R5
Fractional Factorial Designs

No. of No. of
k Design Points k Design Points
1 21 = 2 18-21 29 = 512
2 22 = 4 22-29 210 = 1, 024
3 23 = 8 30-38 211 = 2, 048

4-5 24 = 16 39-52 212 = 4, 096
6 25 = 32 53-69 213 = 8, 192

7-8 26 = 64 70-92 214 = 16, 384
9-11 27 = 128 93-120 215 = 32, 768
12-17 28 = 256

3.6 Central Composite Designs

Because2k factorials or fractional factorials sample each fac-
tor at only two levels, they are very efficient at identifying
slopes for main effects or two-way interactions. Unfortu-
nately, sampling at only two levels means the analyst has no
idea about what happens to the simulation’s response in the
middle of the factor ranges. Going to a3k factorial would
let us estimate quadratic effects, but it takes quite a bit more
data—especially ifk is large!

Another classic design that lets the analyst estimate all
full second-order models (i.e., main effects, two-way inter-
actions, and quadratic effects) is called a central composite
design (CCD). Start with a2k factorial or R52k−p frac-
tional factorial design. Then add a center point and two “star
points” for each of the factors. In the coded designs, if−1
and+1 are the low and high levels, respectively, then the cen-
ter point occurs at(0, 0, ..., 0), the first pair of star points are
(−c, 0, ..., 0) and(c, 0, ..., 0); the second pair of star points
are(0,−c, 0, ..., 0) and(0,+c, 0, ..., 0), and so on. A graphi-
cal depiction of a CCD for three factors appears in Figure 10.
If c = 1 the start points will be on the face of the cube, but
other values ofc are possible.

Although the CCD adds more star points when there are
more factors, using a fractional factorial as the basic de-
sign means the CCD has dramatically fewer design points
than a3k factorial design for the same number of factors.
The additional requirements areO(k). Some examples are
given in Table 13, using the efficient R5 fractional factorials
of Sanchez and Sanchez (2005) as the base designs for the
CCDs. Once again, it is clear that a brute force approach is
impossible whenk is large, but efficient experimental designs
allow the analyst to conduct an experiment.

Table 13: Data Requirements for 3-Level Designs

Central 3k

Composite Factorial
No. of No. of No. of

k Terms Design Pts Design Pts
2 5 10 9
3 9 16 27
4 14 26 81
5 20 28 243
6 27 46 729
7 35 80 2,187
8 44 82 6,561
9 54 150 19,683

10 65 152 59,049
30 495 2,110 2.1E+14
70 2,555 16,526 2.5E+33

120 7,380 33,010 1.8E+57
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Figure 10: Construction of Central Composite Designs

3.7 Crossed and Combined Designs

So far, we have discussed designs for the first of the stated
goals: developing a basic understandingof a particular
model or system. The second goal was that offinding robust
decisions or policies. A robust design approach (Taguchi
1987, Sanchez 2000) means that the factors are classified
into two groups:decision factors, which represent factors
that are controllable in the real world setting the simulation
models; andnoise factors, which are uncontrollable or con-
trollable only at great cost in the real world, but potentially
affect the system’s performance. Sometimes a third group is
added, consisting ofsimulation-specific factorssuch as the
choices of random number streams, batch sizes, run lengths,
and more.

The robust design philosophy means that the decision
should not be based solely on mean performance and how
close it is to a user-specified target value, but also on the
performance variability. One way of accomplishing this is
to redefine the performance measure to reflect the trade-off
between a good mean and a small variance. Alternatives that
often provide more guidance to the decision-maker are to
examine the response mean and response variability at each
design point separately, or to the fit separate models of the
response mean and response variability. Regardless, work-
ing with the expected performance means that expectation is
taken across the noise space.

One way this can be accomplished is by constructing a big
design with columns for all of the decision and noise fac-
tors, referred to as acombined design(Sanchez et al. 1996).
For example, suppose the decision factors are the means and
standard deviations for tasks B, E, F, and Q in the project
management scenario, perhaps because different workers,
equipment, or procedures could be used. Further, suppose
the noise factors are the means and standard deviations of
tasks P, S, and T. This total of 14 factors could be examined
using a NOLH with 65 design points or a CCD with 119 de-
sign points (replicated as needed). Examining the results in

terms that involve only the decisions factors will yield insight
into whether or not specific decision-factor combinations are
robust to uncontrollable sources of variation.

Another design choice requires more sampling but may
be easier to justify to decision-makers. Two basic designs
are chosen—one for the decision factors, and another for the
noise factors. They need not be the same type of design.
A crossed designis then constructed by running each of the
noise factor design points for each of the decision factor de-
sign points. Table 14 shows a portion of the design obtained
by crossing a NOLH with 33 design points (for the decision
factors) with a NOLH with 17 design points (for the noise
factors) for the project management simulation. The base
design has a total of33× 17 = 561 runs.

Whether the goal is to develop a basic understanding of
the model, or to identify robust settings for decision factors,
crossed designs can also be useful when a few factors take
on a handful of discrete qualitative or quantitative levels.
The capture-the-flag simulation could be run in dusk or night
settings, e.g., by crossing a21 design for time of day with an
112 design for speed and stealth. The project management
simulation could be run by crossing a combined design for the
14 task time means and standard deviations with a33 design
that varies the task time distributions (normal, uniform, and
symmetric triangular) for three of the tasks.

4 DISCUSSION

Designs like the ones described in this paper have assisted the
U.S. military and over five allied countries in a series of inter-
national workshops as part of the U.S. Marine Corps’Project
Albert effort (Horne and Meyer 2004). Interdisciplinary
teams of officers and analysts develop and explore agent-
based simulation models to address questions of current in-
terest to the U.S. military and allies, such as network-centric
warfare, effective use of unmanned vehicles, future combat
systems, peace support operations, convoy protection, and
more. Sanchez and Lucas (2002) provide an overview of is-
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Table 14: Crossed Design for Project Management Simulation

Crossed Decision Factors Noise Factors
Design Point Design Point µB µE · · · σQ Design Point µP µS · · · σT

1 1 680 1238 · · · 2.4 1 679 1100 · · · 9.6
2 1 680 1238 · · · 2.4 2 672 950 · · · 5.9
...

...
...

...
...

...
...

...
...

...
17 1 680 1238 · · · 2.4 17 683 925 · · · 6.3
18 2 676 1600 · · · 1.9 1 679 1100 · · · 9.6
19 2 676 1600 · · · 1.9 2 672 950 · · · 5.9
...

...
...

...
...

...
...

...
...

...
34 2 676 1600 · · · 1.9 17 683 925 · · · 6.3
...

...
...

...
...

...
...

...
...

...
544 33 648 1350 · · · 1.5 1 679 1100 · · · 9.6
545 33 648 1350 · · · 1.5 2 672 950 · · · 5.9

...
...

...
...

...
...

...
...

...
...

561 33 648 1350 · · · 1.5 17 683 925 · · · 6.3

sues in modeling and analysis aspects of agent-based simula-
tion. Cioppa, Lucas, and Sanchez (2004) discuss highlights
from studies of squad size determination, degraded commu-
nications on the battlefield, and unmanned surface vehicles
for both information, reconnaissance and surveillance mis-
sions and force protection scenarios. A humanitarian assis-
tance scenario is described by Wolf et al. (2003) and Kleijnen
et al. (2005).

More information about the Project Albert efforts can also
be found online at<http://www.projectalbert.
org> . The web page for the Simulation Experiments &
Efficient Design Laboratory (SEED lab) at the Naval Post-
graduate School, at<http://diana.cs.nps.navy.
mil/SeedLab> , is another resource. It contains links to
numerous masters theses where simulation experiments have
been used to explore a variety of questions of interest to mil-
itary decision makers, as well as some spreadsheet tools and
Java software for creating the designs described in this paper.

For more on the philosophy and tactics of designing simu-
lation experiments, examples of graphical methods that facil-
itate gaining insight into the simulation model’s performance,
and an extensive literature survey, we refer the reader to Klei-
jnen et al. (2005). This tutorial has touched on a few designs
that we have found particularly useful, but other design and
analysis techniques exist. Our intent was to open your eyes
to the benefits of DOE, and convince you to make your next
simulation study a simulationexperiment.
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